Representations of vertex operator algebras
نویسنده
چکیده
This paper is an exposition of the representation theory of vertex operator algebras in terms of associative algebras An(V ) and their bimodules. A new result on the rationality is given. That is, a simple vertex operator algebra V is rational if and only if its Zhu algebra A(V ) is a semisimple associative algebra. 2000MSC:17B69
منابع مشابه
Vertex operator algebras associated to modular invariant representations for A ( 1 ) 1 ∗
We investigate vertex operator algebras L(k, 0) associated with modular-invariant representations for an affine Lie algebra A (1) 1 , where k is ’admissible’ rational number. We show that VOA L(k, 0) is rational in the category O and find all irreducible representations in the category of weight modules.
متن کاملSimple currents and extensions of vertex operator algebras
We consider how a vertex operator algebra can be extended to an abelian intertwining algebra by a family of weak twisted modules which are simple currents associated with semisimple weight one primary vectors. In the case that the extension is again a vertex operator algebra, the rationality of the extended algebra is discussed. These results are applied to affine Kac-Moody algebras in order to...
متن کاملRegularity of rational vertex operator algebras
Rational vertex operator algebras, which play a fundamental role in rational conformal field theory (see [BPZ] and [MS]), single out an important class of vertex operator algebras. Most vertex operator algebras which have been studied so far are rational vertex operator algebras. Familiar examples include the moonshine module V ♮ ([B], [FLM], [D2]), the vertex operator algebras VL associated wi...
متن کاملGeneralized Rationality and a “Jacobi Identity” for Intertwining Operator Algebras
We prove a generalized rationality property and a new identity that we call the “Jacobi identity” for intertwining operator algebras. Most of the main properties of genus-zero conformal field theories, including the main properties of vertex operator algebras, modules, intertwining operators, Verlinde algebras, and fusing and braiding matrices, are incorporated into this identity. Together with...
متن کاملPrincipal Vertex Operator Representations For Toroidal Lie Algebras
Vertex operators discovered by physicists in string theory have turned out to be important objects in mathematics. One can use vertex operators to construct various realizations of the irreducible highest weight representations for affine Kac-Moody algebras. Two of these, the principal and homogeneous realizations, are of particular interest. The principal vertex operator construction for the a...
متن کامل